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A method is described to produce global phase diagrams for single-component

molecular crystals with separable internal and external modes. The phase

diagrams present the equilibrium crystalline phase as a function of the

coef®cients of a general intermolecular potential based on rotational symmetry-

adapted basis functions. It is assumed that phase transitions are driven by

orientational ordering of molecules with a ®xed time-averaged shape. The mean-

®eld approximation is utilized and the process begins in a high-temperature

disordered reference state, then spontaneous symmetry-breaking phase

transitions and phase structure information at lower temperature are sought.

The information is mapped onto phase diagrams using the intermolecular

expansion coef®cients as independent variables. This is illustrated by global

phase diagrams for molecules having tetrahedral symmetry (e.g. carbon

tetrachloride, adamantane and white phosphorus). Uses of global phase

diagrams include crystal structure data mining, guidance for crystal design

and enumeration of likely or missing polymorphic structures.

1. Introduction

Molecular crystals are lattices of discrete molecular groups

held together in the solid state by non-covalent interactions

such as van der Waals forces or hydrogen bonding. They have

been the subject of interest due to the potential for controlling

solid-state properties with appropriate variations to the

molecular components. Indeed, many interesting properties

once thought to be unique to inorganics have been discovered

in molecular crystals, including electrical conductivity (Wudl,

1984), nonlinear optical behavior (Chemla & Zyss, 1987) and

ferromagnetism (Miller et al., 1988). Since the structure of the

constituent molecules can be modi®ed via traditional organic

synthetic chemistry, organic molecular crystals seem to hold an

advantage for crystal design. Unlike covalent bonds within

molecules, however, intermolecular interactions are less

speci®c with regard to relative orientation and are much

weaker. These weak non-speci®c bonds make crystal structure

design and control dif®cult, though there have been a number

of advances both in crystal engineering (Desiraju, 1989; Braga

et al., 1999; Holman et al., 2001; Moulton & Zaworotko, 2001)

and in crystal structure prediction (Gavezzotti, 1994; Beyer et

al., 2001; Leusen, 2003). Ultimately, crystal structure predic-

tion remains dif®cult because physical and chemical properties

of crystalline solids are dependent not only on the properties

of the constituent molecules but also on the spatial arrange-

ment of the molecules within the crystal lattice.

The rigorous study of the relationship between molecular

structure and crystal structure has been in development since

at least the early 1960s, when Kitaigorodskii (1961) and

Williams, (1966) reported crystal structure predictions by

rigid-body molecular-packing analysis. X-ray diffraction data

were used to verify and re®ne the initial proposed packing. It

was not until the last decade, with recent progress of

computing power, that energy-minimization approaches

became possible (Gdanitz, 1992; Holden et al., 1993;

Karfunkel et al., 1993; Williams, 1996). In these approaches,

the energy of the crystal is represented by a force ®eld, as

implemented in molecular mechanics (Dinur & Hagler, 1991).

To describe fully the intermolecular interactions, the potential

is represented as a sum of terms for electrostatic and van der

Waals interactions, and for bond bending and stretching

(Coombes et al., 1996; Price, 1996; Gavezzotti, 2002). Once a

potential function is derived or assumed, a search method-

ology is used to locate the global minimum and obtain the

energetically favored structure. There are several computa-

tional programs that have been developed for the prediction

of stable crystal structures (Gavezzotti, 1991; Gdanitz, 1992;

Holden et al., 1993; Karfunkel et al., 1993; van Eijck et al., 1995;

Tajima et al., 1995; Chaka et al., 1996; Schmidt & Englert, 1996;

Williams, 1996; Pillardy et al., 2001), reviews of which have

been given in the literature (Gdanitz, 1997, 1998; Verwer &

Leusen, 1998).

Recently, the Cambridge Crystallographic Data Centre

conducted two blind tests of some of the currently available

crystal-structure prediction methods. Participants were given

only the chemical structures for six organic compounds with

unpublished but accurately known crystal structures

(Lommerse et al., 2000; Motherwell et al., 2002). Each par-

ticipating group was allowed to submit a list of three crystal



structures for each compound, and the submission was

considered correct if the observed structure was on the list.

The study found that, with 15 groups participating, the overall

success rate for predicting the crystal structure was approxi-

mately 17%. No method had a signi®cantly higher success

rate.

A post-analysis of the results from the blind tests revealed

that the programs placed the experimental structure among a

long list of potential polymorphs, but often it was removed by

a few kJ molÿ1 from the global minimum given by their model

potential. Thus, the observed structure was located further

down the energetic ranking and not selected, despite being

only slightly higher in energy. Another study involving acetic

acid resulted in approximately 100 different structural candi-

dates, all within only 5 kJ molÿ1 of each other (Mooij et al.,

1998). Apparently, the success of a given method depends less

on the search method than accurately and precisely ranking

many possible structures that differ little in energy (Chaka et

al., 1996).

The major dif®culty in crystal-structure prediction lies in

the energy surface itself, which is often quite ¯at with many

local minima of similar energy. Small details in the par-

ametrization of the intermolecular potential (IP), such as

position of interaction sites, heavily in¯uence the energy

ranking on this surface. Given results computed for a par-

ticular IP, small perturbations to the parameters can reshuf¯e

the energetic order of the local minima. Owing to this extreme

parameter sensitivity, we have chosen to consider the inverse

problem. We are developing methods that use known crystal

structures to place strong limits on interaction potentials

consistent with the observed structures. The set of such limits

can be represented on a global phase diagram, which

summarizes the crystal phase behavior as a function of inter-

molecular potential parameters. This type of tool is well

established for classifying and rationalizing liquid±vapor

phase behavior in terms of molecular parameters (van

Konynenburg & Scott, 1980). By constructing global phase

diagrams for solid phases, we seek to highlight the trends and

relationships among molecular crystals.

To generate global phase diagrams, we require an inter-

molecular potential with a minimum number of adjustable

parameters, but still general enough to be broadly applicable.

This motivates the selection of a potential for systems domi-

nated by rotational coupling as detailed in x2.2 and discussed

in x5. The potential that we have used is appropriate for ®xed-

shape molecules interacting through van der Waals and/or

hydrogen-bonding interactions. Since the potential is based on

nearest-neighbor pairwise additive interactions, it is not

appropriate for ionic, covalent or metallic systems. These

restrictions are discussed further in x2.2 and x5. For molecules

with non-trivial point-group symmetry, it is convenient to

reduce the dimensionality of the phase diagrams through

adaptation of the potential to molecular symmetry. This basic

approach of expanding the angle-dependent intermolecular

interactions into symmetry-adapted rotation functions was

originally developed for phase transitions in heavy methane

by James & Keenan (1959) and has since been applied to

crystals such as solid C60 (Michel et al., 1992; Lamoen &

Michel, 1999). Rather than investigating structures for a

speci®c molecule with a given IP, however, we construct global

phase diagrams for all molecules with a selected point-group

symmetry.

Global phase diagrams have several uses. Firstly, there is a

wealth of structural data available today, such as in the

Cambridge Structural Database (Allen & Motherwell, 2002),

so we gain a data mining tool for insight into the inter-

molecular forces that form crystals. Secondly, by locating

neighboring structures that may be more desirable than a

given crystal, global phase diagrams provide feedback for

crystal engineering and molecular synthesis to achieve a

desired crystal. Finally, global phase diagrams can provide

rationalization and/or prediction of crystal polymorphs for a

given molecule. These applications are discussed in greater

detail in x5.

The goal of this paper is to describe methods for producing

global phase diagrams like those illustrated in Fig. 1, which has

been constructed for tetrahedral molecules. Global phase

diagrams give the thermodynamically stable phase as a func-

tion of temperature and parameters m in the intermolecular

potential, as de®ned in x2.3. The remainder of the paper is

organized as follows. x2 details the development of the

statistical mechanical and group-theoretical framework used

to describe the orientational state of the crystal. There we

indicate the assumptions made and describe the inter-

molecular potential used. A brief synopsis of the model has

been given elsewhere (Keith et al., 2004). In x3, we present the

elements of the solution method, including speci®cation of the

reference state and the computational approach used to locate

and identify phase-transition surfaces in IP parameter space.

x4 provides an example of our method applied to single-

component crystals composed of molecules with tetrahedral

symmetry. x5 summarizes the uses of these diagrams and

contains some discussion of their limitations. Finally, the

Appendices present a few of the more technical details of the

calculations.1

2. Model development

x2.1 introduces our approach to the free energy. x2.2 discusses

the separation of the partition function into rotational,

translational and intramolecular components. Based on close-

packing and mode separation arguments, we suggest mol-

ecular orientation dominantly in¯uences phase-diagram

construction. A general orientational potential is presented in

x2.3 and the mean-®eld approximation and crystallographic

group theory invoked to calculate the free energy in x2.4 and

assign the phase in x2.5.
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1 Appendices A±F have been deposited as supplementary material. These data
are available from the IUCr electronic archives (Reference: PZ5009). Services
for accessing these data are described at the back of the journal.



2.1. Free energy

Beginning with a crystal of N identical molecules each with

M atoms, the classical canonical partition function Z is given

by

Z � 1

h3NM

ZZ
exp�ÿH=kT� dx dp; �1�

where h is Planck's constant, k is Boltzmann's constant, T is

the absolute temperature, H is the crystal Hamiltonian, and

the vectors x and p are atomic positions and linear momenta,

respectively. Use of this partition function requires molecules

with large enough mass and moments of inertia such that

the degrees of freedom can be treated classically at the

temperature of interest. It should not be used for quantum

rotors such as H2 and NH3 at low temperature. Thermo-

dynamic properties of the crystal can be calculated based on

the relationship between the partition function and the

Helmholtz free energy A,

A � ÿkT ln Z: �2�
Since A�T;V� is a fundamental equation of state, the other

thermodynamic state variables (e.g. internal energy, entropy

etc.) may be expressed as functions of Z and its derivatives

(McQuarrie, 2000). Although equation (1) is exact, it is

impractical to use since it is a 6NM-dimensional integral where

N is a macroscopic quantity. To simplify calculations, we make

several assumptions that are described and justi®ed in the

following paragraphs.

2.2. Separation of modes

The intramolecular vibrations and distortions (internal

modes) of molecules generally occur on a time scale that is

much faster than the corresponding rotations and translations

of the molecule as a whole (external modes). The character-

istic frequencies for internal vibrations are often greater than

1200 cmÿ1 (36 THz), compared to less than 100 cmÿ1 (3 THz)

for rotations (Sherwood, 1979). This separation of time scales

causes the vibrational coordinates to be largely independent

of the external coordinates. Therefore, to an excellent

approximation, the partition function is separable into

products of internal and external mode contributions,

Z � �zint�NZext; �3�
where

zint �
1

h3Mÿdÿ3ÿt

ZZ
exp�ÿHint=kT� dx dp �4�

Zext �
1

hN�d�3�t�

ZZ
exp�ÿHext=kT� dx dp: �5�

The molecular dimensionality d has a value of 2 for linear

molecules and 3 for nonlinear molecules, while t is the number

of shape-changing torsions, discussed below. The internal

degrees of freedom in a typical molecule are contained in zint,

while Zext contains the external degrees of freedom, including

the center-of-mass translations, rigid rotations and their

conjugate momenta.

When considering the separation of internal and external

modes, molecular torsions can fall into either category. Some

torsions have large moments of inertia and dramatically

change molecular shape, such as the C2ÐC3 torsions in

butane. These often have frequencies comparable to those of

rigid rotations, and should be contained in the external

partition function. The number of such torsions is denoted by t

in equations (4) and (5). However, for other torsions the
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Figure 1
(a) [111] view of Td global phase diagram as a function of intermolecular
potential coef®cients m scaled by kT. The origin of the axes is the in®nite-
temperature reference state, discussed in x3. Rays protruding from the
surfaces pointing at distinct phases represent ratios of potential
coef®cients that form tetrahedral molecular crystals of indicated
symmetry. Colored surfaces are boundaries between daughter phases
and the reference f.c.c. phase. (b) ��1�1�1� view of the Td global phase
diagram. Some molecules such as those in the Fm�3m structure appear
`spherical' because of rapid molecular reorientation.



moment of inertia is relatively small and the torsions have

little effect on molecular symmetry, such as the terminal CH3

groups in butane. These appropriately belong in zint since they

are not expected to in¯uence strongly or be in¯uenced by

crystal structure. This work does not consider molecules

having slow molecular shape-changing torsions, and therefore

does not include torsional degrees of freedom in the external

modes (t � 0). This assumption is discussed further in x5.

Since zint is independent of the relative positions and

orientations of the molecules, it is a function only of T and

does not in¯uence phase equilibrium. Therefore, we focus on

the external partition function. The interaction between

center-of-mass displacements and large-amplitude orienta-

tional motion, termed translation±rotation coupling, is most

pronounced in ionic compounds (e.g. NH4Br, NaNO2), while

less important for phase transitions of neutral molecular

crystals (Lynden-Bell & Michel, 1994). The exceptions to this

are for slightly prolate molecules such as C70 (Lamoen &

Michel, 1999) and possibly N2 (LoÈ ding et al., 1997). Since this

coupling is weak in the majority of the organic molecular

crystals that are the focus of this work, we separate Zext into

translational and orientational contributions

Zext � ZtrZor; �6�

where

Ztr �
1

h3N

ZZ
exp�ÿHtr=kT� dx dpx �7�

Zor �
1

hNd

ZZ
exp�ÿHor=kT� dx dp!: �8�

The vector x contains the Euler angles (Varshalovich et al.,

1988) describing the orientation of each molecule and p! is the

vector of conjugate angular momenta.

Combining equations (2), (3) and (6) yields

A � ÿkT�ln zN
int � ln Ztr � ln Zor� �9�

for the crystal free energy, with the internal, translational and

orientational contributions separated. When considering

solid/solid phase transitions, we are interested in the free-

energy difference �A between two crystal structures at the

same temperature. Since we have assumed that the internal

modes are largely decoupled from relative motions of mol-

ecules, the changes in internal modes between structures are

insigni®cant and there is a minor impact on phase behavior

from this contribution. Likewise, the molecular translations

accompanying most solid/solid phase transitions are generally

a small fraction of the lattice parameters. We hypothesize that

the small translations accompanying solid/solid phase equili-

bria are of secondary importance and it is orientational

ordering that drives solid/solid phase change in molecular

crystals. Therefore, we choose to focus on the orientational

Helmholtz free energy Aor � ÿkT ln Zor as the main arbiter of

crystal structure. The consequences of neglecting translational

relaxation of the molecules are revisited in x5.

2.3. Orientational crystal Hamiltonian

To calculate the partition function Zor using equation (8),

we must specify an orientational Hamiltonian Hor � K� V.

The kinetic energy contribution is that of a rotor with principal

moments of inertia fIa; Ib; Icg (McQuarrie, 2000). Integrating

over angular momenta yields

Zor � zN
rot

R
exp�ÿV=kT� d�x�; �10�

where

zrot � 8�2 2��IaIbIc�1=3kT

h2

� �3=2

�11�

d�x� �
Y

i

d�xi� �
Y

i

sin �i dxi

8�2
�12�

are the partition function for the rotor and measure on the

rotation group SO�3�, respectively (Vilenkin & Klimyk, 1991;

Chirikjian & Kyatkin, 2000). Equations (11) and (12) are for

nonlinear molecules (d � 3). zrot and the integral measure are

different for linear molecules (d � 2). Since zrot is indepen-

dent of the relative position and orientation of molecules, it

does not determine crystal structure.

Crystal structure is determined by V and T through the

integration over orientations. For van der Waals solids in

which electrostatic, exchange and dispersion forces dominate,

the interaction potential V inHor can be written as a sum over

two-molecule terms (Stone, 1996). Crystals of strongly dipolar

molecules such as ice or ionic crystals in which induction

forces produce signi®cant three-body terms (Briels et al., 1986)

are not considered here.

We choose to expand the potential using a complete set of

two-molecule basis functions that span the rotational space

SO�3� parametrized by Euler angles x of molecules i; j and

their intervening orientational space S2 parametrized by solid

angle Xij � ��ij; �ij�. Coupling two SO�3� irreducible repre-

sentations (IR's) D
`i
mini
�xi� and D

`j
mjnj
�xj� and a spherical

harmonic C`
m�Xij� gives

W
ninj

`i``j
�
X

mimmj

`i ` `j

mi m mj

� �
D`i

mini
C`

mD
`j
mjnj
; �13�

where the explicit functional dependence of C`
m and D

`j
mjnj

has

been dropped. De®nitions of basis functions and a derivation

of the coupling is provided in Appendix A. The functions D`
mn

are called Wigner functions. Wigner functions and spherical

harmonics are orthogonal and complete, making their irre-

ducible decomposition W
ninj

`i``j
a complete set of orthogonal

IP basis functions over the eight-dimensional space

SO�3� � S2 � SO�3�. Their properties have been studied

previously (van der Avoird et al., 1980; Briels, 1980; Stone &

Tough, 1984; van der Avoird et al., 1994).

While the basis functions W
ninj

`i``j
are general, it is of great

advantage computationally to project out the point-group

symmetry of the molecule and that of the Wyckoff point.

Appendix B reviews our use of projection operators which

amount to matrix multiplication by a sparse unitary matrix

S
`i
nin� , where � refers to a point-group IR and n� is a particular
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component of the IR. For example, using projection operators

for the molecular point group yields symmetry-adapted matrix

elements

T`i
min�
�xi� �

P
ni

D
`i
mini

S
`i
nin� ; �14�

which may be coupled to produce symmetry-adapted basis

functions

F
n�n�
`i``j
�
X

mimmj

`i ` `j

mi m mj

� �
T`i

min�
C`

mT
`j
mjn� : �15�

With these basis functions, the potential is

V � 1
2

P
ij

P
`i``jn�n�

�
n�n�
`i``j
�rij�Fn�n�

`i``j
�xi;Xij;xj�; �16�

where the half avoids overcounting, `i; `j 2 N,

j`i ÿ `jj � ` � `i � `j and �
n�;n�
`i;`;`j
�rij� are coef®cients that are

functions of the distance rij between molecular centers. The

full set of these in the potential is termed m. Subscripts �; � are

a compound index referring to multiple copies of the mol-

ecular point-group unit IR subduced in the `i; `jth manifold of

SO�3� and n�; n� is its dimension, which is always n�; n� � 1.

Point-group IR subduction frequencies in spherical harmonics

are discussed elsewhere (Bradley & Cracknell, 1972). All

other point-group IR's do not have the full molecular

symmetry and so are zero to ®rst order. Thus electronic

structure is averaged over short time vibrations and excita-

tions so the molecule is invariant under the full molecular

point group (Califano et al., 1981). These coef®cients can be

calculated ef®ciently from ab initio or empirical potentials

using a fast Fourier transform for SO�3� (Maslen & Rockmore,

1997; Chirikjian & Kyatkin, 2000).

Projecting out Wyckoff point symmetry from the functions

T
`i
min� gives rotator functions

U`i
m�n�
�xi� �

P
mini

S
`i�
mim�D

`i
mini

S
`i
nin� : �17�

Expressing the potential using coupled rotator functions gives

V=kT � 1
2

P
ij

P
`i`jm�m�n�n�

U
`i
m�n�K

`i`j
m�n�m�n�U

`j
m�n� ; �18�

where

K
`i`j
m�n�m�n� �Xij� �

X
`mimmj

�
n�;n�
`i;`;`j
�rij�

kT

`i ` `j

mi m mj

� �
S`i

m�mi
C`

mS
`j
m�mj

�19�
is a dimensionless coupling function. Subscripts �, � are a

compound index referring to multiple copies of the Wyckoff

point-group IR's subduced in the `i; `jth manifold of SO�3�
and m� , m� goes over the dimensions of each IR. It is some-

times convenient to write equation (18) using a shorthand

notation

V=kT � 1
2

P
ij

Ui � Kij �Uj; �20�

in which Ui is a vector covering all elements of U
`i
m�n� and Kij is

a coupling matrix. The generalized dot product matches

multiple repeated indices in the potential.

By symmetry adapting in two steps, we are able to de®ne the

expansion coef®cients in equation (16) and expand the

potential using rotator functions in equation (18). Thus the

expansion coef®cients �
n�;n�
`i;`;`j

are functions of molecular par-

ameters and intermolecular distance, but are independent of

crystal structure. They serve as independent variables in our

method. The rotator functions Ui are functions of both

molecular and crystal symmetries. These functions lead to

order parameters for phase transitions as discussed in x2.4.

2.4. Space-group order parameters

Using the potential outlined in x2.3, the partition function in

equation (10) must be calculated ef®ciently to construct the

diagrams. The method we have chosen is a variational mean-

®eld theory in which molecules interact with the time-aver-

aged ®eld of their neighbors (Chandler, 1987). Equation (20)

thus becomes

V=kT � Vmf=kT �P
i

Vmf
i =kT �P

i

Ui � hi; �21�

where the vector hi is the mean ®eld coupling to molecule i,

and Vmf
i is the corresponding mean-®eld IP. This formulation is

analogous to standard mean-®eld theory for systems of

continuous spins in the ®eld of their neighbors. This case is

somewhat different because the rotator functions Ui have

multiple components U
`i
m�n� for each molecule i, and there is a

corresponding ®eld for each. Therefore, the dot product in

(21) is to be interpreted as a summation over multiple indices

as discussed in x2.3.

Following the treatment in Appendix C, this leads to the

potential

Vmf=kT �P
ij

Ui � Kij � hUji: �22�

The absence of a factor of 1=2 compared to equation (20) is

a result of the variational principle. The thermodynamic

averages hUii for the rotator functions are

hUii �
1

zi

Z
Ui exp�ÿVmf

i =kT� d�xi�; �23�

where

zi �
R

exp�ÿVmf
i =kT� d�xi�: �24�

hUii appears on both sides of the equation and must be solved

self-consistently. Also from Appendix C, the variational

Helmholtz free energy is

Avar
or � ÿkT ln zN

rot

Y
i

zi

 !
ÿ kT

2

X
ij

hUii � Kij � hUji: �25�

The second term in (25), which is a general feature of the

variational free energy, compensates for the lack of the 1=2

factor in equation (22). The resulting free energy is more

accurate than if a 1=2 had been introduced in equation (22)

and this term eliminated.
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With dU as the dimension of hUii, equation (23) for all i is a

set of dUN nonlinear coupled integral equations with a very

large set of solutions. To ®nd the lowest free-energy phase,

information correlating the roots and possible space groups is

desirable. Thus we symmetry adapt the potential using space-

group IR's and de®ne associated order parameters.

To keep the notation simple, we take the special case of one

molecule i per primitive unit cell. The generalization to more

is straightforward. Appendix D reviews the necessary back-

ground of space groups. To symmetry adapt the potential to G,

we ®rst use a discrete Fourier transform over the translational

subgroup T which can also be viewed as a projection operator

over elements ti 2 T
V=kT � 1

2

P
k

Uk� � Kk �Uk; �26�

where

Uk � 1

jT j1=2

X
ti2T

exp�ÿik � ti�Ui �27�

Kk � 1

jT j
X

ti;tj2T
exp�ÿik � �ti ÿ tj��Kij: �28�

The summation over k goes over reciprocal-lattice vectors for

all unit cells of the crystal.

A diagonalization of Kk (Michel & Copley, 1997; Birman,

1984) can be used to express the potential in terms of eigen-

frequencies Hk � �Ek�ÿ1 � Kk � Ek and normal coordinates

Qk � �Ek�ÿ1 �Uk. In terms of the normal coordinates, the

potential is

V=kT � 1
2

P
k

Qk� �Hk �Qk: �29�

As discussed in Appendix D, each k vector belongs to a star s.

Creating a vector of Qk belonging to a star and grouping

components from each Qk by IR gives an ordered form of

equation (29)

V=kT � 1
2

P
s

Qs� �Hs �Qs: �30�

This form has the IR components of each Qs in consecutive

order. Appendix D discusses the matrices fDsg onto which a

space-group IR maps elements of G. Since the action of G on

Qs induces this representation

g �Qs
p�
�P

r�

Qs
r�

Ds
r�p�
�g�; �31�

the Qs are basis functions of a crystallographic IR space.

Although equation (30) gives the proper value of the

potential, a Hamiltonian constructed with this potential leads

to equations of motion that are not invariant under time

reversal T̂ that maps the complex ®eld onto itself. To remedy

this, Qs must be made to transform like physically irreducible

representations of the space±time symmetry group

G � G� T̂G. The mappings Qs ! qs, Hs ! Ks accom-

plishing this are discussed in Appendix E. The potential

symmetric under time reversal is

V=kT � 1
2

P
s

qs � Ks � qs; �32�

where IR's from this point on are implicitly real physically

irreducible representations. Whereas the Qs are frequently

complex, the qs are real-valued and the associated Hamil-

tonian yields equations of motion that are symmetric under

time reversal.

The mean-®eld version of equation (32) is constructed in

analogy to equation (22), giving

Vmf=kT �P
s

qs � Ks � hqsi �33�

with orientational probability density

� � exp�ÿVmf=kT� R exp�ÿVmf=kT� d�x�� �34�
and free energy

Avar
or � ÿkT ln Zmf

or ÿ
kT

2

X
s

hqsi � Ks � hqsi; �35�

where

hqsi � R qs� d�x�: �36�
The IR components of hqsi are order parameters (OP's) with

amplitude �1;ÿ1�. Whereas the number of hUii is proportional

to N, the number of hqsi important to phase transitions is small

as discussed in the following section.

2.5. Phase-transition information

With basis functions symmetry-adapted to a space group

IR, we relate IR distortions to crystal-structure changes. To do

this, we expand � in the basis functions qs, which are a

complete set over con®gurational space SO�3� � Z3

� �P
s

as � qs �37�

and by orthogonality determine the coef®cients

as � ws � R qs� d�x� � hqsi � ws; �38�
where ws is a diagonal matrix of weights 2li � 1 arising from

the SO�3� manifold dependence of the components of qs. This

gives the Ginzburg±Landau form of � (Chaikin & Lubensky,

1995)

� �P
s

hqsi � ws � qs: �39�

The order parameters have slightly different transformation

rules to the basis functions, which can be seen by the action of

G on �

g � � �P
s

P
p�

hqs
p�
iws

p�p�

P
r�

qs
r�

Ds
r�p�
�g� �40�

from which the action of G on the OP's is

g � hqsi �P
p�

Ds
r�p�
�g�hqs

p�
i: �41�

At a temperature higher than a phase transition, � is invariant

under the parent phase group G0 (g � � � � � �0). Below

the phase-transition temperature, certain order parameters

become nonzero giving the probability density change
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�� � �ÿ �0 �
P

s

hqsi � ws � qs; �42�

where s goes over the stars of those OP's that are nonzero.

These OP's can be primary, coupled primary or secondary

OP's.

The space-group operators leaving all hqsi invariant in

equation (41) determine the phase. As space groups are

discrete in®nite groups, this requires some care. Appendix D

discusses how each IR maps all the elements g in the parent

phase G0 to matrices Ds�g�. If any of these matrices are

identical, this mapping is a homomorphism. The set of distinct

matrices fDsg forms a group called the image I0 of G0 whose

kernel K is the subset of elements g such that the fDsg coincide

with the identity. As the quotient group G0=K is isomorphic to

I0, we write G0 � I0 � K. Although K is an in®nite group, I0 is

®nite so it is useful to use the image instead of the full group

when considering the invariance of ��. The operators of I0 that

leave hqsi invariant form a group I giving the isotropy group

G � I � K. Algorithms exist (Hatch & Stokes, 1985) to

tabulate possible primary OP directions and the images that

leave them invariant (Stokes & Hatch, 1988, 2002a). This gives

(i) a list of all possible solutions to equation (36) for a group±

subgroup transition and (ii) a method to identify nonsubgroup

transitions based on common isotropy groups (Hatch et al.,

2001; Stokes & Hatch, 2002b).

Being able to correlate an OP direction with a speci®c space

group allows one to reduce the system size and make physi-

cally meaningful initial estimates for the OP's. For example,

most phase transitions occur at high-symmetry points in the

Brillouin zone. Thus the number of stars in equation (33) may

be limited to those corresponding to high-symmetry points.

This also means the number of molecules N in equations (23),

(77) (Appendix C) and (25) may be limited to those within the

kernel of a high-symmetry IR. Speci®cally, these are the

molecules within the lattice vectors ti in G0 for which

exp�ik � ti� � 1 �43�
for all arms k of the star. OP directions leading to distinct

space groups may be used to seed ef®cient numerical solutions

of equation (36).

To summarize, phase transitions are branching points of

solutions of equation (36) and the branch that minimizes Avar
or

is different on either side of the transition. Typically, the high-

temperature phase has fewer nonzero OP's. The new OP's and

their relative magnitudes determine the phase. Algorithms

exist to enumerate possible solutions and their corresponding

space groups. Each possibility can be used in turn to ®nd the

lowest free-energy solution of equation (36). A discontinuous

jump of the OP's indicates a ®rst-order phase transition while

a higher-order transition has a continuous bifurcation.

3. Numerical solution methods

This section discusses some of the issues relating to calculation

of the free energy of the new phase such as quadrature and

choice of approximate packing of the molecules. An algorithm

is also presented for constructing phase diagrams.

3.1. Numerical integration

The consistency relations [equation (23) or (36)] form a set

of homogeneous nonlinear integral equations for the OP's,

which must be solved numerically. As derived, the rotator

functions in the integrands are in terms of trigonometric

functions of Euler angles. We have chosen to convert these

into algebraic functions by parametrizing the equations using

quaternions (Kuipers, 1999), which can be accomplished using

Wigner matrices in terms of quaternions (Lynden-Bell &

Stone, 1989). This change of variables involves a 2-to-1

mapping of the unit quaternion space S3 onto the Euler angle

space SO�3�.
The quaternion integration region is the three-dimensional

surface of a four-dimensional sphere. Taking advantage of this

well studied region, we use spherical product Gauss formulae

(Stroud & Secrest, 1966), whereby the three-dimensional

integrals in equation (23) are transformed into the product of

three integrals which are approximated using Gauss±Cheby-

shev (®rst kind), Gauss±Legendre, and Gauss±Chebyshev

(second kind) one-dimensional quadrature formulas. For this

publication, the integrals were approximated using 16 nodes in

each quadrature for a total of 4096 function evaluations per

integration. The 2-to-1 mapping permits using only half of

these points.

3.2. Reference state

The resulting set of nonlinear algebraic equations and

analytic Jacobian are solved using Newton±Raphson iteration

(Press et al., 1992). This requires an initial guess suf®ciently

close to the global free-energy minimum [via equation (25)].

Thus it is helpful to have a reference state in a particular

lattice that minimizes the free energy. For this purpose, we

de®ne a high-temperature (T !1) reference state of the

crystal, in which the substance remains crystalline and the

molecules maintain their identity. In this limit, equation (23)

reduces to

lim
T!1
hUii �

R
U
`i
m�n� d�xi� � �`i;0

; �44�

where the second equality follows from the properties of

Wigner functions (Varshalovich et al., 1988). Therefore, the

only nonzero order parameter in this high-temperature limit is

the one resulting from the angle-independent rotator function,

hU 0
m�n�
i � 1. The orientational distribution of the molecules

thus has the highest possible symmetry, that of a sphere. This

corresponds to a fully disordered plastic crystalline (FDPC)

phase, with translational but not orientational order within the

crystal (Timmermans, 1961; Sherwood, 1979). The FDPC

structure is observed for molecules such as methane

(Neumann et al., 2003) and C60 (Michel & Copley, 1997). Most

molecular crystals melt, sublime or decompose prior to

reaching this state. Even if the FDPC state is not observed for

a particular molecular crystal, it is a useful reference state

analogous to the ideal-gas reference state for vapors.

The plastic crystalline state is a solution of the consistency

relations [equation (23) or (36)] for any lattice of molecular

centers, but the proper lattice for the reference state is the one
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that minimizes Avar
or . Evaluating the free energy [equation (25)]

in the high-temperature limit and neglecting terms of order

Tÿ2 gives

lim
T!1

Avar
or � ÿN kT ln zrot ÿ

Nnn

2
�0;0;0�rnn�

� �
; �45�

where Nnn is the number of nearest neighbors and rnn is the

nearest-neighbor distance at ®xed molecular volume v. For

clarity, the superscripts on �0;0;0 in (45) have been dropped.

Since zrot is independent of the lattice, the second term in (45)

determines the high-temperature lattice. The number of

nearest neighbors and their relative distances are summarized

in Table 1 for several candidate lattices. For attractive

potentials (�0;0;0 < 0), the free energy is minimized for a close-

packed lattice (f.c.c. or h.c.p.) at the density that minimizes

�0;0;0. For long-range repulsive potentials (�0;0;0 > 0), the

lattice that minimizes Avar
or depends upon the form of the

potential. Stiff potentials favor more neighbors at a larger

nearest-neighbor distance (i.e. f.c.c./h.c.p.) whereas soft

potentials favor fewer neighbors at a shorter nearest-neighbor

distance (i.e. diamond). Hard spheres are a special case. They

form f.c.c. lattices due to translational entropy, an effect that

has been neglected along with translational/rotational

coupling in our model.

Once the high-temperature lattice has been selected, Xij is

determined for each nearest-neighbor pair. The coupling

matrix Kij and thus the order parameters (hUii or hqsi) are

then functions only of the scaled Fourier coef®cients m=kT.

Since the order parameters provide a ®ngerprint for the

crystal structure, we are able to construct global phase

diagrams using the scaled Fourier coef®cients at ®nite

temperature as independent parameters.

3.3. Global phase diagram construction

Our algorithm for constructing global phase diagrams is

illustrated in Fig. 2. Any of the molecular point groups may be

chosen. Reference lattices are discussed in x3.2 above. In this

section, we describe the remaining steps from Fig. 2.

To ®nd the ®rst transition temperature for a particular set of

�
n�n�
`i``j

, we align the set of hqsi in a vector hqi and generalize

equations (33) and (36)

Vmf=kT � q � K � hqi �46�
hqi � R q� d�!� �47�

and observe at the new phase

hqi � hqcfi � D; �48�
where hqcfi is the crystal ®eld and is nonzero only for the unit

IR's in the ÿ point OP of the parent phase qÿ. The second term

D is a vanishingly small OP for the primary IR of the new

phase that rises continuously from zero at the second-order

phase-transition temperature T2 (Heid, 1993). Inserting this

solution in equation (47) and expanding the exponential

around D gives an eigenvalue problem for T2

ÿ�hq� qi ÿ hqcfi � hqcf�i � ~K � D � kT2D�O�D2�; �49�
where � is a direct product, ~K � kTK is independent of

temperature and all thermal averages are in the crystal ®eld

potential

Vcf=kT � q � K � hqcfi: �50�
The crystal ®eld OP's hqcfi are obtained by solving their

consistency relations. As this is also temperature dependent, it

must be solved simultaneously with equation (49) for T2 for

each possible IR of D. The highest T2�k� gives the IR of the

symmetry-breaking distortion.

For a f.c.c. reference state, each IR can be identi®ed by the

nonzero components of the corresponding eigenvector which

are the point-group IR's �w of the Wyckoff point group w

appearing in the representation of w subduced by the space-
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Table 1
Candidate high-temperature lattices, their number of nearest neighbors,
the nearest-neighbor separation as a function of speci®c volume v and
presence of inversion center at molecular sites in the FDPC phase.

Lattice Nnn rnn Inversion

f.c.c./h.c.p. 12 �21=2v�1=3 � 1:1225v1=3 Yes/No
b.c.c. 8 �3� 31=2v=4�1=3 � 1:0911v1=3 Yes
s.c. 6 v1=3 � 1:0000v1=3 Yes
Diamond 4 �3� 31=2v=8�1=3 � 0:86603v1=3 No

Figure 2
Flow chart illustrating the algorithm for constructing global phase
diagrams.



group IR �G, �G # w (Bradley & Cracknell, 1972). This

nonzero subduction frequency is

n � 1

jwj
X
g2w

��G �g����w �g�: �51�

Special rules apply for physically irreducible representations

and are explained by Stokes et al. (1991). The star corre-

sponding to this IR gives the number of independent mol-

ecules in the system, see equation (43). While this method

worked well for the f.c.c. lattice, we have since found that it is

inadequate for other lattices. A more general approach to

identify IR's, appropriate for other reference lattices, has been

outlined by Maradudin & Vosko (1968).

The dimension of the IR is equal to the number of degen-

erate zero eigenvalues. If this dimension is greater than one,

any linear combination of the D is a solution of equation (49)

up toO�D2�. This gives a limited domain in which to search for

hq�i. As discussed in x2.4, the OP directions corresponding to

distinct isotropy subgroups of � provide a list of all possible

hq�i. We ®nd that initializing a Newton±Raphson solver with

an OP direction with a magnitude that minimizes the free

energy improves convergence to a self-consistent solution

minimizing Avar
or . Thus we evaluate Avar

or for multiple random

values for each OP direction, without regard for the consis-

tency relations, and keep track of the trial OP that minimizes

Avar
or . This provides an initial estimate that rapidly converges

towards a self-consistent solution for the OP's using the

consistency relations. The OP directions, images, isotropy

subgroups, new Wyckoff points, and k-stars can be calculated

using ISOTROPY (Stokes & Hatch, 2002a).

Once the phase-transition temperature is located and the

free energy minimized, the stability of the solution is tested.

To do this, we use linear response theory (Chaikin &

Lubensky, 1995) to determine how the system responds to an

in®nitesimal perturbation away from equilibrium at ®xed

temperature. De®ning the response of the order parameters to

an applied disturbance in the ®elds (see Appendix F),

vo � @hUi
@h

����
o

; �52�

the solution is stable if the Hessian

@2Avar
or

@hUi@hUi � ÿ�v
o�ÿ1 � K �53�

is positive de®nite. The eigenvectors of the Hessian evaluated

at the phase-transition temperature provide equivalent in-

formation to D regarding the subspace of OP's that must be

searched to minimize the free energy.

The order parameters for the low-temperature solution hqi
fall into two categories

�a� lim
T!T2

hqi ÿ hqcfi � 0

�b� lim
T!T2

hqi ÿ hqcfi 6� 0:

In case (a), the phase transition is second or higher order and

Tpt � T2. In case (b), the phase transition is ®rst order and

Tpt >T2. To determine Tpt, the free energies of the two solu-

tions are set equal,

Avar
or �Tpt; hqi� � Avar

or �Tpt; hqcfi�; �54�
and solved for Tpt, where free energies and consistency rela-

tions were discussed in x2.4.

To construct a global phase diagram, the above procedure is

repeated for multiple sets of potential coef®cients m. After a

sampling of points from the hypersphere of potential coef®-

cients has been completed, we interpolate between corre-

sponding phase transitions to locate the boundaries of the

phases on the diagram. Fig. 1 is typical of global phase

diagrams displaying the highest-temperature transition par-

ametrized by three potential coef®cients. Equilibrium loci for

two particular phases are assigned a unique color. A global

phase diagram presenting multiple transitions, where possible,

as a function of two potential coef®cients has been presented

elsewhere (Keith et al., 2004).

4. Example: tetrahedral molecules

To illustrate the method, we consider the class of molecules

invariant under the tetrahedral point group (e.g. methane,

adamantane, white phosphorous). This is because of its

historical signi®cance (Nagamiya, 1951; James & Keenan,

1959; Yamamoto et al., 1977), applications to homologous

series such as diamondoid lattice synthons (Zaworotko, 1994)

and the high symmetry which leads to a reduction in the

number of potential coef®cients.

In a study of the seven most populated space groups from

the Cambridge Structural Database, Motherwell (1997)

concluded that there was a tendency for even nonspherical

molecules to pack as if they were spheres, suggesting a way of

looking at complex packing structures as approximations to

the packing of spheres. Based on this, we choose to illustrate

our method using a cubic close-packed (f.c.c.) high-tempera-

ture reference lattice Fm�3m, although a complete analysis

requires consideration of alternative reference lattices.

As there are an in®nite number of potential coef®cients and

we need a small number of independent variables, in this

example we take equation (16) with `trunc � 3

V � 1
2

P
ij

P
`i;`j2f0;3g

P`i�`j

`�j`iÿ`jj

P
n�;n�2 1A1

�
n�n�
`i``j
�rij�Fn�n�

`i``j
�xi;Xij;xj�:

�55�
This truncation is discussed further in x5. From subduction

frequencies in SO�3�, the unit IR appears once in the zeroth

and third manifolds. Therefore, all �
ninj

`i``j
with `i; `j � 1 or 2 are

zero and n�; n� � 1 for `i; `j � 0 or 3 and f�; �g � A1. Also,

the behavior of F
ninj

`i``j
under inversion allows one to show that

(van der Avoird et al., 1994)

�
n�n�
`i``j
� 0 if `i � `� `j � odd �56�

and, if molecules i and j are identical,

�
n�n�
`i``j
� �ÿ1�`i�`j�

n�n�
`j``i

: �57�
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Therefore, for Td molecules the only nonzero coef®cients in

the truncated potential are

f�0;0;0; �0;3;3; �3;3;0; �3;0;3; �3;2;3; �3;4;3; �3;6;3g; �58�
where the redundant superscripts have been dropped. The

®rst coef®cient has a corresponding basis function that is

isotropic. It in¯uences the reference lattice through its radial

dependence but does not favor any particular rotationally

ordered phase. Therefore it is not included in the global phase

diagram. By equation (57), the second and third coef®cients

are equal in magnitude so only one is independent. Further-

more, for molecules in a reference lattice with an inversion

center at the occupied Wyckoff points such as f.c.c., b.c.c. or

s.c., neither �0;3;3 nor �3;3;0 appear in the potential due to

pairwise cancellation. This reduces the number of potential

coef®cients to four. We take the �3;2;3 � 0 projection since

�3;2;3 is small for a representative tetrahedral molecule

(Missaghi et al., 2004) and the remaining three coef®cients

m � f�3;0;3; �3;4;3; �3;6;3g �59�
serve as independent parameters.

Next we symmetry adapt the rotator functions to Oh, the

point group of Wyckoff point a in Fm�3m, and expand the sum

in equation (33) over stars belonging to high-symmetry points

of the Brillouin zone. This gives q � fqÿ; qX ; qL; qWg as shown

in Table 2 where the star superscript has been dropped when

repeated in the IR notation of Miller & Love (1967). Apart

from qÿ�
1
� U0

1;1 � 1, the trivial case, there is no qÿ�
1

basis

function in the ÿ star so there is no crystal ®eld and the

variance in equation (49) is the identity. As a result, there is no

crystal ®eld and equation (49) can be solved directly for T2 as a

function of m in this case. Generally, T2 must be solved for

iteratively due to the consistency relations for the crystal ®eld.

The eigenvalues of equation (49) provide the temperatures

leading to the ®rst phase-transition surfaces in Fig. 1. The

origin is the reference state and the axes are scaled potential

parameters m=kT. Each ray from the origin is a particular

molecular crystal as a function of temperature. Some of the

phase surfaces are planar while others are curved. Each

differently colored surface corresponds to a different lower-

temperature phase and each volume to a phase.

To identify each phase, equation (36) is solved for a system

of N independent molecules as shown in Table 2 with the

resulting OP directions in Table 3. Phase boundaries beyond

the ®rst phase transition are discussed elsewhere (Keith et al.,

2004). The transition temperatures T2 are also shown as a

function of wavevector in Fig. 3 for three example sets of

potential coef®cients discussed in the following paragraphs.

For m=kT � f f1; 0;ÿ5g, where f is a temperature-depen-

dent scaling factor, the phase is f.c.c. at high temperature

(f < 0:82) and, as shown in Fig. 4, the free energy has a single

minimum. Fig. 3(a) shows that a ÿ-point mode has the highest

T2. The corresponding eigenvector has nonzero entries for T2u

components of Ui. The nonzero subduction frequency of T2u in

ÿÿ5 # Oh identi®es this mode as ÿÿ5 . Possible isotropy

subgroups and their associated OP directions calculated using

ISOTROPY are listed in Table 4. These OP directions include

the six possible daughter phases. As the temperature is
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Table 2
High-symmetry IR basis functions and the number of independent
molecules N in the kernel of G0 ! I0.

qs N

qÿ � fqÿ�
1
; qÿÿ

2
; qÿÿ

4
; qÿÿ

5
g 1

qX � fqX�
1
; qXÿ

2
; qXÿ

3
; qXÿ

4
; qXÿ

5
; qXÿ

5
g 4

qL � fqL�
1
; qLÿ

1
; qLÿ

2
; qLÿ

2
; qLÿ

3
; qLÿ

3
g 8

qW � fqW1
; qW1

; qW2
; qW3

; qW5
; qW5
g 32

Table 3
Space-group IR OP directions with corresponding space group and
Wyckoff points of the molecules.

Cases with two IR's and OP's give the primary IR ®rst and the secondary IR's
second. Letters a; b in the `OP directions' column are temperature-dependent
constants. Each solution is only one of several energetically equivalent
domains.

IR OP directions Space group Wyckoff point Z

ÿ�1 {1} 225 Fm�3m a 4
ÿÿ2 fag 216 F �43m a 4
ÿÿ4 ;ÿ

ÿ
2 fa; a; ag; fbg 160 R3m a �z � 0� 3

ÿÿ5 fa; 0; 0g 121 I �42m a 2
Xÿ2 fa; 0; 0g 137 P42=nmc b 2
Xÿ3 ;ÿ

ÿ
2 fa; a; ag; fbg 215 P�43m e �x � 3=4� 4

Xÿ4 fa; 0; 0g 134 P42=nnm b 2
Xÿ5 ;Xÿ5 fa; 0; 0; 0; 0; 0g,

fb; 0; 0; 0; 0; 0g
59 Pmmn a �z � 1=4� 2

Lÿ1 fa; a; a; ag 226 Fm�3c a; c 32
Lÿ2 ;Lÿ2 fa; a; a;ÿag,

fb; b; b;ÿbg
227 Fd�3m e �x � 3=4� 32

Figure 3
Second-order transition temperatures in arbitrary units along some high-
symmetry points and lines for three sets of expansion coef®cients (a)
f1; 0;ÿ5g, (b) f0; 0;ÿ1g and (c) f35;ÿ11;ÿ5g. The highest temperature
in each case corresponds to the symmetry-breaking IR.



lowered (f > 0:82) and the system passes the phase boundary,

equation (36) gives a stable OP direction fa; 0; 0g for hqÿÿ
5
i as

the free energy displays new minima. See the insets to Fig. 4.

As stated previously, the phase transition is continuous so no

search for T1 is necessary. Other solutions such as f0; a; 0g and

f0; 0; ag with the same free energy correspond to distinct

domains of this phase with different orientations. The new

phase is I �42m, a symmorphic phase as expected from a ÿ-point

IR. The molecules are at Wyckoff point a. This is a body-

centered tetragonal phase with all molecules in equivalent

orientations and lattice constants a � b � c=21=2. This is one

point on the light blue surface in Fig. 1(a).

For m=kT � f f0; 0;ÿ1g at high temperature (f < 8:60) in a

f.c.c. phase, Fig. 3(b) shows the highest T2 at the L point. Its

eigenvector is nonzero for the T2u point-group IR, giving the

four-dimensional Lÿ1 space group IR. Just past f � 8:60,

equation (36) converges to the lowest free-energy OP

hqLÿ
1
i � fa; a; a; ag giving the new phase Fm�3c with molecules

at Wyckoff points a and c. Other equivalent directions are

fÿa;ÿa; a; ag, fÿa; a; a;ÿag and fa;ÿa; a;ÿag. The unusual

feature of this phase is that two of the eight molecules at

Wyckoff point a in the primitive unit cell are disordered while

the other six at Wyckoff point c assume a ®xed equilibrium

position. See the inset labeled Fm�3c in Fig. 1(b). This structure

is observed in methane and deuteromethane (Press, 1972;

Yamamoto et al., 1977).

For m=kT � f f35;ÿ11;ÿ5g, Fig. 3(c) shows a phase transi-

tion of the same temperature for three places in the Brillouin

zone to lowest order. A subduction frequency calculation

shows these modes are the 12-dimensional V2 IR in the V line

star, the three-dimensional Xÿ2 IR and the six-dimensional W3

IR. As equation (49) truncated at second order gives all three

with the same transition temperature, a calculation must be

done for all three IR's to ®nd the lowest free-energy phase.

The V line involves a system size of N � 256, so specialized

techniques are employed as described in Appendix G.

Comparing the ®ve possibilities, we ®nd the Xÿ2 IR with

direction fa; 0; 0g has the lowest free energy and the space

group is P42=nmc with molecules at Wyckoff point b.

To fully explore the three-dimensional surface depicted in

Fig. 1, nine different sets of potential coef®cients were

considered in the same manner as the three discussed above.

Other structures listed in Table 3 were identi®ed in the same

manner giving three symmorphic phases at the ÿ point and six

nonsymmorphic ones from the X and L stars. Only P42=nmc

required consideration of the V line and W point. The unit-cell

structures for each phase in Fig. 1 are drawn with tetrahedral

subunits meant to indicate the orientation of the threefold

axes and to suggest a molecular component. The size and

precise shape of the subunits was chosen arbitrarily. Dotted

lines indicate the relationship to the reference lattice in cases

where the Bravais lattice is different to the reference lattice.

5. Discussion

Since the purpose of this publication is to present a method for

producing molecular crystal global phase diagrams, it is

appropriate to comment at some length on the limitations,

features and applications of our work. There are several

assumptions used in the derivation of our methods that limit

their applicability. Although they are discussed separately

within x2, it seems appropriate to summarize them in x5.1 and

x5.2. There are also several noteworthy features of our model

that may not be apparent from the derivation. They are

discussed in x5.3. Finally, we discuss some of the ways in which

global phase diagrams may be used in x5.4.

5.1. Assumptions and their justifications

The partition function in equation (1) is for a classical

crystal. It should not be used at or below the translational and

rotational excitation temperatures based on the molecular

mass and moments of inertia. In practice, this means that it

should not be applied to crystals of quantum gases such as H2

or He, nor should it be applied to crystals of quantum rotors

such as CH4 (James & Keenan, 1959; Yamamoto et al., 1977).

Molecules in which the heavy atoms are collinear but H atoms

are off-axis, such as ethylene, have two classical and one

quantum rotation. Replacing hydrogen with deuterium is

generally suf®cient to make the classical partition function

applicable in the relevant temperature range. Crystals of

molecules with three or more noncollinear heavy atoms are

well modeled using equation (1) at temperatures relevant for

their phase transitions. Our model is appropriate for mol-

ecular crystals composed of molecules whose dimensionality
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Figure 4
Orientational OP versus temperature for m / f1; 0;ÿ5g. At high T,
hqÿÿ

5
i � f0; 0; 0g giving a f.c.c. phase. At low T, hqÿÿ

5
i � fa; 0; 0g, where a

is temperature-dependent, giving the phase I �42m. Insets show Avar
or versus

a at three temperatures showing a single minimum at the origin at high
temperature and multiple equivalent minima at low temperature.

Table 4
Isotropy subgroups and OP directions for the ÿÿ5 IR.

Subgroups OP directions Lattice vectors of new unit cell

121 I �42m fa; 0; 0g f1=2; 1=2; 0g; fÿ1=2; 1=2; 0g; f0; 0; 1g
44 Imm2 fa; a; 0g f1=2; 0; 1=2g; f0; 1; 0g; fÿ1=2; 1=2; 0g

155 R32 fa; a; ag fÿ1=2; 1=2; 0g; f0;ÿ1=2; 1=2g; f1; 1; 1g
8 Cm fa; b; 0g f0; 0;ÿ1g; f0; 1; 0g; f1=2; 0; 1=2g
5 C2 fa; a; bg fÿ1=2; 1;ÿ1=2g; fÿ1=2; 0; 1=2g; f1=2; 0; 1=2g
1 P1 fa; b; cg f0; 1=2; 1=2g; f1=2; 0; 1=2g; f1=2; 1=2; 0g



with all atoms considered is the same as when H atoms are

disregarded.

Equation (1) is also written for a single-component crystal

of N identical molecules. It is clearly applicable to crystals that

exclude their solvent, but it can reasonably be applied in other

cases as well. Crystals of multiple components that are tightly

and rigidly bound may be treated as if they are composed of a

single supermolecular component. At the other extreme,

proteins often crystallize with a large and variable volume

fraction of water. Such crystals can be modeled using our

methods as a single component whose interactions are medi-

ated by implicit residual solvent. Both of these cases may

occur together. Our model as written is not suitable for

nonrigid stoichiometric solvates and other multicomponent

crystals. In this case, the relative positions and orientations of

each component should be treated separately. There are many

more high-temperature reference phases to be considered for

multicomponent crystals, particularly if the stoichiometry is

not ®xed. Also, there are many more potential coef®cients m to

be considered if the components interact both with themselves

and with each other. Both effects greatly complicate our

analysis, but may be included in principle.

There is a detailed discussion of our assumptions regarding

separation of modes in x2.2 so we only summarize it brie¯y

here. We have invoked the common assumption that internal

vibrational modes decouple from the external modes. Torsions

are the exception. There a distinction is made between

torsions that do not signi®cantly change the molecular shape

(such as for methyl groups) and shape-changing torsions. The

latter type leads to the possibilities of conformational poly-

morphs and of crystals in which the same molecule adopts

multiple conformations. Also, such torsions can lead to

translation±rotation coupling preventing the separation of

these modes in equations (7) and (8). These complexities have

been avoided in the current work. Thus, as presented here, our

model is applicable to molecules without torsions that couple

strongly to molecular rotational and/or translational modes,

t � 0.

We have further assumed that the rotational modes drive

phase changes between crystalline phases in molecular solids.

This is not always the case for multicomponent ionic crystals

such as alkali metal cyanides/superoxides, sodium nitrate/

nitrite and ammonium halides (Lynden-Bell & Michel, 1994).

In these cases, the rotations of the anions are strongly coupled

to cation translations while the cations screen the rotational

couplings between anions. Since we have eliminated multi-

component systems from consideration, we do not discuss

these further here. Order/disorder phase transitions in crystals

of neutral molecules are generally dominated by rotational

coupling (Lynden-Bell & Michel, 1994). We do not mean to

imply that molecules do not translate during phase transitions,

only that the translations are secondary to the orientational

structure changes.

An example may serve to illuminate the role of translations.

Heavy methane (CD4) crystallizes at atmospheric pressure

near 90 K forming a fully disordered f.c.c. plastic crystal called

phase I. At 27.0 K, a new phase with Fm�3c symmetry forms as

shown in Fig. 1. In this phase, called phase II, the molecules

remain on a f.c.c. lattice but adopt orientational preferences

that break some of the high-temperature phase symmetries.

At 22.1 K, the crystal phase changes to Cmca in which the

molecules not only adopt new orientational preferences but

also move a few percent of a lattice parameter into new lattice

sites (Neumann et al., 2003). This phase is called phase III.

This phase does not appear in Fig. 1 due to our choice of

potential coef®cients as discussed below. We contend that the

molecular translations accompanying the transition from

phase II to phase III are of secondary importance. To test this

hypothesis, we took the Cmca structure and translated the

molecules back to their phase II locations while preserving

their phase III orientations. This structure also has space

group Cmca. Thus the translations did not break any addi-

tional crystallographic symmetries but merely relaxed by a

small fraction of the lattice parameter in directions permitted

by the rotationally determined space group. Thus the trans-

lations are tied to secondary order parameters while the

primary order parameters have rotational origins. Small

density changes associated with solid/solid phase changes are

also tied to these secondary order parameters, at least at low

pressures. The quantitative effects caused by omitting trans-

lations are expected to be similar to those related to omission

of other secondary order parameters (Michel & Copley, 1997).

The work of Motherwell (1997) indicates that the molecular

centers in the majority of the Cambridge Structural Database

share similar close-packing tendencies. We conclude that the

database contains many structures determined primarily by

rotational coupling. Our method focuses on these structures.

In writing the interaction potential in equation (16), we

assumed that it is pairwise additive over molecules. It is well

known that there are important three-body effects when

considering interactions among atoms (Stone, 1996). Such

effects are included implicitly in the values of the expansion

coef®cients m if the atoms are contained in two molecules. Not

included explicitly in the model is the in¯uence of an entire

molecule on the interactions between two other molecules.

Since most molecules are larger than their characteristic

interaction distance, this is a reasonable approximation. Also,

since we consider phase change at constant density, the

multimolecular effects are included implicitly in the values of

the potential coef®cients as a mean-®eld contribution. As a

brief aside, this contribution to the intermolecular potential is

not easily calculated using ab initio methods. In fact, there is

no available method to calculate the dispersion interaction in

an in®nite crystal from ab initio calculations (Wilson, 2003).

This inability to calculate accurately the dominant binding

mechanism for van der Waals crystals currently limits the

effectiveness of ab initio methods for molecular crystal

structure prediction. It is much less of a limitation for metallic,

covalent and some strongly hydrogen-bonded structures. Ab

initio methods have been quite successful in describing these

structures (Wilson, 2003). Our model is not appropriate for

metallic or covalent structures because it neglects many-body

interactions. Likewise any limitation to nearest-neighbor

interactions precludes ionic or strongly dipolar molecules
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which require Ewald sums over distant neighbors. However,

the pairwise additive potential over molecules with an implicit

multibody contribution is a good approximation for the

neutral molecules considered here.

The mean-®eld approximation does not include the effects

of correlation in molecular motions. This is not believed to

affect the properties of phases far from phase transitions or

near ®rst-order phase transitions, but does have signi®cant

effects on properties near continuous phase transitions. In

principle, classical density functional methods can fully

account for correlations, but the unknown free-energy func-

tional introduces other uncertainties (Oxtoby, 2002). Renor-

malization group theory contains methods for incorporating

correlation effects in mean ®eld models, but we ®nd it dif®cult

to automate (Chandler, 1987). We anticipate that correlation

effects may change the magnitudes of phase-transition

temperatures, but are unlikely to change the identities of the

phases involved. Since global phase diagrams are used

primarily to indicate relations among phases rather than to

produce high-precision predictions, we choose to ignore such

correlation effects for simplicity.

The ability to construct low-dimensional global phase

diagrams depends upon the representation of the IP using as

few parameters as possible. Potential-energy expansions

similar to equation (16) have been used by previous authors

who have concluded that the convergence of the summations

is too slow for practical applications (Briels, 1980). However,

the same authors acknowledge that this is surprising consid-

ering the early success in representing phase behavior with

only one parameter (James & Keenan, 1959). We contend that

the fault lies in the methods used to determine the expansion

coef®cients m rather than the expansion itself. Since the basis

set in the expansion is orthogonal, the standard technique is to

multiply both sides of equation (16) by one of the functions

F�xi;Xij;xj� and integrate over all orientations. This method

is known to provide optimal estimates for m in the least-

squares sense (Davis, 1989). The drawback of this method is

that it equally weights all possible orientations whereas crystal

structures typically contain only low-energy molecular inter-

actions. What is needed is a potential that is very accurate in

the vicinity of the energy minima while sacri®cing accuracy for

the less-important high-energy interactions. To this end, we

are re®ning a process for evaluating m that equates the

multidimensional Taylor-series expansion of the potential and

its approximation in equation (16). The result is a potential

that accurately represents the low-energy interactions but

underestimates the strongly repulsive portions of the poten-

tial. This type of potential is ideal for crystallization modeling,

but would be less suitable for molecular-beam scattering

studies, for instance. Another bene®t of this potential par-

ametrization is that it naturally produces a coarse-grained

approximation to very complicated potentials. This is crucial

for protein modeling for which a fully atomistic potential

would require far too many parameters. We have in mind a

coarse-grained potential more in keeping with the patch

model of Lenhoff and co-workers (Hloucha et al., 2001). For

the purposes of this paper, it is suf®cient to acknowledge that

the expansion in equation (16) can give a suitable potential

with a small number of expansion coef®cients. Details of this

method will be published elsewhere (Missaghi et al., 2004).

5.2. Additional assumptions in the example

For the purposes of our example in x4, we have made

additional assumptions which simpli®ed the example but are

not absolutely necessary given our methods. These are

discussed in this subsection.

We have assumed that molecular distortions due to the

crystal ®eld are small. Therefore only basis functions consis-

tent with the unit representation of the molecular point-group

symmetry were included in equation (16). Strong crystal ®elds

can induce a distortion of the molecule that changes the

magnitudes of the expansion coef®cients and can introduce

additional coef®cients if the molecular symmetry is reduced.

For instance, cubic molecules cannot have a dipole moment in

vacuum but a dipole can be induced if the molecule is placed

in a suitable crystal. We believe that these induced potential

coef®cients are likely to be small and therefore minor

contributors to the crystal phase behavior. This is consistent

with the common belief that molecules in crystals have

structures similar to those in other phases, except that torsion

angles may be ®xed in the crystal. Again, we have not

considered external torsional modes in this work.

We have also assumed that the potential is dominated by

nearest-neighbor interactions. As a result, the potential coef-

®cients which are de®ned as functions of intermolecular

distance have been evaluated at the nearest-neighbor distance

in the crystal and treated as scalars. This is appropriate if the

molecule is large relative to its range of interaction and the

molecule is globular. The ®rst condition is met for all but the

smallest of molecules. The second is met for many of the

compounds in the Cambridge Structural Database, but does

not apply to molecules that form interpenetrating networks

(Zaworotko, 1994). Crystals composed of interpenetrating

networks form when nonconvex molecules interact favorably

with second or more distant neighbors, but do not strongly

repel their nearest neighbors. This case may be handled by

de®ning potential coef®cients for multiple sets of neighbors.

The effect is to multiply the number of potential coef®cients in

the potential by the number of signi®cant sets of neighbors.

Since interpenetrating network crystals are an interesting but

relatively uncommon occurrence, we have retained only ®rst

neighbors in our example.

When choosing which terms to retain in equation (16), we

simply truncated the potential for `i; `j � 3. As noted earlier,

this prevented the low-temperature phase of heavy methane

Cmca from appearing on the slices of the global phase

diagrams in Fig. 1. We expect that it is possible to observe the

new phase by a less severe truncation of V and plotting a

different projection of the potential coef®cients (Keith &

McClurg, 2004).

Based on the work of Motherwell (1997) and the high-

temperature phase for methane, we chose the f.c.c. reference

phase. A complete global phase diagram for a particular
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molecular point group is the union of ®gures like Fig. 1 with

other high-temperature reference phases such as h.c.p., b.c.c.

and s.c. This opens up the possibility of martensitic transfor-

mations in which the phase transition is between phases with

different reference phases. We are currently producing a more

complete set of global phase diagrams for tetrahedral mol-

ecules (Keith & McClurg, 2004).

5.3. Features

One of the important features of our model is that it

includes temperature-dependent entropic effects by mini-

mizing the free energy (A) rather than simply the potential

(V). Though it has been noted that the free energy is a better

criterion for structure prediction than is the lattice energy (van

Eijck et al., 2001), many of the currently available software

packages are based on the assumption that molecules adopt

single low-energy orientations at low temperature (Lommerse

et al., 2000; Motherwell et al., 2002). This becomes inadequate

at ®nite temperatures and for crystals with disordered phases

(i.e. plastic crystals). Our model includes contributions from

the kinetic energy and from the entire distribution of mol-

ecular orientations, both of which are important to represent

adequately the physical behavior of the molecular crystals at

®nite temperature.

Our method is a systematic procedure to search for low-

temperature crystalline phases starting from a small number of

high-temperature reference lattices. By starting with a highly

symmetric structure and seeking symmetry-breaking tran-

sitions, we avoid the need to scan a large number of trial

structures. Other search algorithms choose a series of space

groups and a variable number of molecules per primitive cell

to propose suitable structures (Verwer & Leusen, 1998). The

most common space groups and small-integer numbers of

molecules per cell are considered ®rst, but this procedure is

not exhaustive. Therefore the possibility of a less-common

space group and/or a larger unit cell cannot be discounted.

Our method eliminates this uncertainty by starting in one of a

small number of fully disordered plastic crystalline structures.

Subsequent symmetry-breaking phase transitions lead to less-

symmetric space groups and/or larger unit cells without having

to specify these a priori.

By summarizing the phase behavior of an entire class of

molecules with the same point-group symmetry, rather than

one molecule at a time, we are able to answer several

important questions.
* Why is a given phase observed and not an alternative

phase?
* What phase is to be expected for a member of a hom-

ologous series given the structures of the other members?
* How will a perturbation to the intermolecular potential

affect the equilibrium phase?
* What perturbation to the intermolecular potential is

required to cause a desired change in phase?
* Which phases have only slightly higher free energy than

the equilibrium phase?

The answers to these questions are the basis for several uses of

molecular crystal global phase diagrams.

5.4. Uses

Global phase diagrams like the ones shown in Fig. 1 are

maps between intermolecular potentials and crystalline phase

behavior. The maps could be used to predict crystal structure

if the potential coef®cients were known with suf®cient accu-

racy and precision. Unfortunately, the large number of nearly

iso-energetic structures common in molecular crystals make it

likely that the global minimum free energy changes abruptly

as a result of small changes in the interaction potential. This is

an instance of extreme parameter sensitivity. The requisite

accuracy and precision for crystal-structure prediction is

dif®cult to achieve given the dif®culty in accurately estimating

dispersion interactions for in®nite crystals using ab initio

methods, as discussed above. Therefore, we recommend using

our global phase diagrams for the inverse problem. The global

phase diagrams serve as tools for delineation of the family of

interaction potentials that is consistent with an observed

crystal structure. Owing to the extreme parameter sensitivity

that hinders crystal structure prediction, the inverse problem

yields a small family of consistent potential parameters. Of

course the solution is not unique. This process, which we call

reverse engineering of the crystal, has several uses.

Reverse engineering of a crystal is a tool for data mining in

the extensive Cambridge Structural Database and Protein

Data Bank. Examining molecules of the same symmetry with

similar chemical structures (e.g. homologous series) allows us

to compare the interaction potential parameters that led to

each structure in an attempt to understand the relationship

between interaction potential and crystal structure.

We are able to provide guidance in crystal design to

produce desired crystal structures. For some applications,

including nonlinear optical and organic electronic materials, a

particular space group or packing motif is desired. Currently, a

candidate molecule with desirable properties is synthesized

and crystallized, but too often the resulting crystal structure is

incompatible with the desired bulk properties. The key is to

direct changes to the candidate molecule to in¯uence crystal

phase behavior in a desired manner. This search is largely

unguided, requiring extensive synthesis and crystallization of

candidate molecular libraries. Using molecular crystal global

phase diagrams, the IP parameters can be estimated for both

the observed and the desired crystal structures. The direction

in phase space indicated by the differences between the two

parameter sets is an indication of the perturbation to the

intermolecular potential needed to achieve the desired crystal.

This perturbation is in a form that can be used to screen

molecules using ab initio methods. We have previously noted

that such methods may not have the requisite accuracy for

reliable crystal-structure prediction, but they may be useful for

indicating the perturbation to the intermolecular potential

resulting from a perturbation of the molecular structure.

There is reason for optimism because differences are often

more easily estimated than absolute magnitudes. Thus the
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global phase diagrams provide a feedback mechanism from

the synthetic chemist to the ab initio property simulator.

The methods used to produce the global phase diagrams can

also provide information about metastable phases. The range

of metastability of each phase is not shown in Fig. 1 for clarity,

but in most cases the low-energy metastable phases are the

neighboring phases in the global phase diagram. Each of these

is a possible crystal polymorph. If information about one or

more polymorphs is known, the family of consistent inter-

molecular potential parameters can be further re®ned.

Alternatively, the structures and relative energies for various

polymorphs can be computed for a particular choice of

intermolecular potential parameters. Certainly kinetics plays

an important role in determining which polymorphs are

observed. However, high-energy structures are unlikely to be

observed and the observed polymorphs must be at least

metastable. A set of observed polymorphs that surrounds, but

does not include, a particular phase in the global phase

diagram would be a strong indication that the missing phase is

a yet to be observed polymorph which is likely to be the

thermodynamically stable structure. The inference regarding

the stable structure derives from its supposed central location.

On the other hand, if the observed polymorphs form a convex

set within the global phase diagram, then the most stable of

the existing polymorphs is likely to be the thermodynamically

stable one.

6. Conclusions

We have described a method for construction of molecular

crystal global phase diagrams. The phase diagrams summarize

the phase behavior of molecules with a given molecular point-

group symmetry. The method is illustrated for the tetrahedral

point group Td. Molecular crystal global phase diagrams are

useful tools for data mining, crystal design and polymorph

enumeration.
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